N56-416

## SPACE RESEARCH COORDINATION CENTER



# A CLASS OF RELATED SPACE-TIMES

|               | BY                                                |
|---------------|---------------------------------------------------|
| (CODE) /9     | A. H. THOMPSON DEPARTMENT OF MATHEMATICS          |
|               | GPO PRICE                                         |
| <b>.</b>      | CFSTI PRICE(S                                     |
| 572 F         | Hard copy (                                       |
| NA OR AUGUSTA | Microfiche (I<br>ff 653 July 65                   |
| N 66          | UNIVERSITY OF PITTSBURGH PITTSBURGH, PENNSYLVANIA |

GPO PRICE \$

CFSTI PRICE(S) \$\_\_\_\_\_

Hard copy (HC)

Microfiche (MF) \_\_\_\_\_\_150

29 OCTOBER 1965



### A CLASS OF RELATED SPACE-TIMES+

bу

A. H. Thompson
Department of Mathematics, University of Pittsburgh

#### 1. Introduction.

In a recent paper Kerr and Schild [1] have considered the solution of the vacuum field equations  $R_{ab} = 0$ , for a space-time 1) with metric tensor  $g_{ab}$  of the form

$$g_{ab} = \eta_{ab} + k_a k_b$$
.

Here  $n_{ab}$  is the metric of Minkowski space in coordinates which are cartesian, but not necessarily rectangular, and  $k_a$  is a null vector field;  $g^{ab}k_ak_b = 0$ . The contravariant components of the metric tensor take the simple form

$$g^{ab} = \eta^{ab} - k^{a}k^{b}$$

where  $k^a = g^{ab}k_b$ ; consequently  $k_a$  is also a null vector of the flat space-time. An important result for the above space-times is that they are algebraically special in the sense of the Pirani-Petrov classification.



1) By space-time we will mean a four-dimensional Riemannian space of signature +2. Quantities in space-time will be defined as in: Riemannian Geometry by L. P. Eisenhart (Princeton University Press). + Supported in part by the National Aeronautics and Space Administration under grant Ns G-416, University of Pittsburgh.

More generally, given an arbitrary space-time  $\tilde{V}_4$  with metric tensor  $\tilde{g}_{ab}$ , and a null vector field  $k_a$ , then we can consider the tensor

$$g_{ab} = \tilde{g}_{ab} + k_a k_b ,$$

as the metric tensor of a related space-time  $V_4$ . In this note the relationship of  $V_4$  to  $\tilde{V}_4$  is considered and a generalisation of the above result concerning the Petrov type of  $V_4$ , when  $\tilde{V}_4$  is a flat space-time, is given.

2. Preliminary Results. Let  $g^{ab}$  and  $\tilde{g}^{ab}$  denote the contravariant metric tensors of  $V_4$  and  $\tilde{V}_4$  respectively. The tensor  $S^{ab}$  is defined by:

$$s$$
 =  $s$  -  $s$  ab  $s$  -  $s$ 

Hence

$$g g_{bc} = (\tilde{g}^{ab} + S^{ab})(\tilde{g}_{bc} + k_b k_c) = \delta_c^a$$

which reduces to

(2.1) 
$$(\tilde{g}^{ab}k_b + S^{ab}k_b)k_c + S^{ab}\tilde{g}_{bc} = 0$$
.

The contraction of this equation with  $\tilde{k}^c = \tilde{g}^{cd}k_d$ , and the assumption that  $k_c$  is a null vector field of  $\tilde{V}_4$  gives

$$s^{ab} \tilde{g}_{bc} \tilde{g}^{cd} k_d = s^{ab} k_b = 0$$
.

From (2.1) we see that

$$s^{ab} = -k^a k^b$$

and further

$$k^a = g^{ab}k_b = \tilde{g}^{ab}k_b + S^{ab}k_b = \tilde{k}^a$$
.

The contravariant form of (1.1) is therefore

(2.2) 
$$g^{ab} = \tilde{g}^{ab} - \tilde{k}\tilde{k}^{a} = \tilde{g}^{ab} - k\tilde{k}^{b},$$

and  $k_a$  is also a null vector field of  $V_4$ .

The metric relations (1.1) and (2.2) will imply a correspondence between quantities in  $V_4$  and  $\tilde{V}_4$ . In particular, there will be relations between their respective affine connexions and curvature tensors.

We will denote by ";" covariant differentiation with respect to the connexion  $\Gamma^a_{bc}$  of  $V_4$ , and by "||" covariant differentiation with respect to  $\tilde{\Gamma}^a_{bc}$  the connexion of  $\tilde{V}_4$ . A simple calculation gives

(2.3) 
$$\Gamma_{bc}^{a} - \tilde{\Gamma}_{bc}^{a} = \tilde{g}^{ad}(k_b k_{[d||c]} + k_c k_{[d||b]}) + k^a(k_{(b||c)} + k_{(bq_c)})$$

where  $k_{(a||b)}$  and  $k_{[a||b]}$  denote the symmetric and antisymmetric parts of  $k_{a||b}$ , and  $q_c = k_{c||d}k^d$ . We note also that

(2.4) 
$$\Gamma_{bc}^{a}k^{b} = \tilde{\Gamma}_{bc}^{a}k^{b} + \tilde{g}^{ad}k_{(c}q_{d)}$$

(2.5) 
$$\Gamma_{bc}^{a}k_{a} = \tilde{\Gamma}_{bc}^{a}k_{a} - k_{(bq_{c})},$$

(2.6) 
$$\Gamma_{bc}^{a}k^{b}k^{c} = \tilde{\Gamma}_{bc}^{a}k^{b}k^{c},$$

and

(2.7) 
$$\Gamma_{ba}^{a} = \widetilde{\Gamma}_{ba}^{a}.$$

It follows therefore that

(2.8) 
$$q_c = k_{c||d}k^d = k_{c;d}k^d; \tilde{q}^c = q^c.$$

From equations (2.4)-(2.7) we deduce the following theorem.

Theorem 2.1. The expansion [2] of the null vector field  $k_a$  is invariant under the transformation  $\tilde{V}_4$   $V_4$  given by (1.1). Further if  $k_a$  is a geodesic vector field of  $\tilde{V}_4$ , then it is also geodesic in  $V_4$ , and the shear and rotation [2] of  $k_a$  are also invariant.

#### Proof.

We have the relation

$$k_{a|b} = k_{a;b} + (\Gamma_{ab}^{d}k_{d} - \tilde{\Gamma}_{ab}^{d}k_{d})$$
,

which with (2.5) implies

(2.9) 
$$k_{a|b} = k_{a;b} - k_{(a^{q}b)}$$

and

(2.10) 
$$k^{a|b} = k^{a;b} - k^{[ab]}$$

The expansion  $\tilde{\theta}$  of  $k_a$  in  $V_4$  is defined by  $\tilde{\theta} = \frac{1}{2} k^a ||_a$ . From (2.7) or (2.9) we have

$$\frac{1}{2} k^{a} | |a| = \frac{1}{2} k^{a}; a = \theta,$$

and the first part of the theorem follows.

For the shear  $\tilde{\sigma}$  and the rotation  $\tilde{\omega}$  of  $k_{\underline{a}}$  in  $\tilde{V}_{\underline{4}}$  we have

$$2\tilde{\omega}^2 = k_{[a||b]}k^{a||b}$$
, and  $2\tilde{\sigma}^2 = k_{(a||b)}k^{a||b} - 2\tilde{\theta}^2$ .

Now from (2.10)

$$k_{(a||b)}k^{a||b} = (k_{(a;b)} - k_{(a^{q}b)})(k^{a;b} - k^{[a_{q}b]})$$

$$= k_{(a;b)}k^{a;b} - k_{(a;b)}k^{a^{b}} = k_{(a;b)}k^{a;b} - \frac{1}{2}q^{b}q_{b}.$$

We have already that  $\tilde{\theta} = \theta$  and therefore

(2.11) 
$$2\tilde{\sigma}^2 = k_{(a;b)}k^{a;b} - 2\theta^2 - \frac{1}{2}q^bq_b = 2\sigma^2 - \frac{1}{2}q^bq_b$$

Similarly from (2.9) we have for the rotations

(2.12) 
$$2\tilde{\omega}^2 = 2\omega^2 - \frac{1}{2}q^bq_b.$$

The condition for  $k_a$  to define a geodesic congruence in  $\tilde{V}_4$  is  $q_a = \lambda k_a$ ; and from (2.8) this is invariant under  $\tilde{V}_4$  V4. The second part of the theorem now follows from (2.11) and (2.12).

3. The Generalisation of the Kerr-Schild Result. An elementary calculation gives the result

(3.1) 
$$R_{ab}k^{a}k^{b} = \tilde{R}_{ab}k^{a}k^{b} + q^{b}q_{b}$$

from which follows

#### Theorem 3.1.

If  $\tilde{V}_4$  and  $V_4$  are vacuum space-times then  $k_a$  necessarily defines a null congruence of geodesics in both  $\tilde{V}_4$  and  $V_4$ .

Proof.

From (3.1)  $q^b q_b = 0$ , and also from the definition of  $q_b$ ,  $k^b q_b = 0$ . Since space-time is of signature +2, no two real null vectors can be orthogonal unless one is a nultiple of the other. Therefore we must have

$$q_a = k_{a||b}^{b} = k_{a;b}^{b}^{b} = \lambda k_{a}$$

and the congruences defined by ka are necessarily geodesic.

#### Theorem 3.2.

If  $V_4$  and  $V_4$  are vacuum space-times and  $V_4$  is algebraically special in the Pirani-Petrov classification with  $k_a$  as a double root

of its Debever equation, then V<sub>4</sub> is necessarily algebraically special with k<sub>a</sub> as a double root of its Debever equation.

#### Proof.

The Goldberg-Sachs theorem [3] implies that  $k_a$  is a geodesic and shear-free congruence of  $\tilde{V}_4$ . The conditions of the theorem ensure that both these properties hold also for the congruence defined in  $V_4$  by  $k_a$ . Hence by the Goldberg-Sachs theorem  $V_4$  is algebraically special with  $k_a$  as a double root of its **Debever** equation.

The conditions on  $\tilde{V}_4$  can be considerably weakened and yet preserve the result for the special Einstein space  $V_4$ . In fact if it is assumed that  $k_a$  defines a geodesic and shear-free congruence in  $\tilde{V}_4$ , ( $\tilde{V}_4$  is not necessarily algebraically special) then it follows that it also defines a geodesic and shear-free congruence in  $V_4$ , and hence from the Goldberg-Sachs theorem  $V_4$  is algebraically special.

#### REFERENCES

- [1] Report to the International Meeting on General Relativity, Florence, Italy, September 1964.
- [2] J. Ehlers & W. Kundt. Chapter 2 of GRAVITATION ed. L. Witten, John Wiley & Sons, Inc. 1962.
- [3] W. Kundt & A. H. Thompson, Comptes Rendus 254, p.4257-4259. 1962.